Relationship of spinal dynorphin neurons to delta-opioid receptors and estrogen receptor alpha: anatomical basis for ovarian sex steroid opioid antinociception.
نویسندگان
چکیده
Pharmacological and behavioral studies suggest that spinal delta- and kappa-opioid antinociceptive systems are functionally associated with ovarian sex steroids. These interactions can be demonstrated specifically during pregnancy or hormone-simulated pregnancy (HSP). The analgesia associated with both conditions can be abolished by blockade of either spinal kappa-opioid receptors or delta-opioid receptors (DOR). Furthermore, both dynorphin (DYN) release (J Pharmacol Exp Ther 298:1213-1220, 2001) and the processing of the DYN precursor (J Neurochem 65:1374-1380, 1995) are significantly increased in the spinal cord during HSP. We undertook the current study to determine whether DYN, DOR, and estrogen receptor alpha (ERalpha) share anatomical relationships that permit their direct interaction. Coexpression of DOR or ERalpha by DYN neurons was assessed using fluorescence immunohistochemistry and a synaptosomal release assay. Findings show that ERalpha and DYN are coexpressed. Moreover, in the spinal cord of HSP animals, there were significant increases in the number of DYN-immunoreactive (DYN-ir) cells, ERalpha-ir cells, cells double-labeled for DYN-ir and ERalpha-ir and the proportion of DYN-ir cells coexpressing ERalpha. Some varicose fibers in the spinal cord dorsal horn and intermediate gray matter that expressed DYN-ir also expressed DOR-ir. Activation of DORs located on DYN terminals was sufficient to inhibit K(+)-evoked DYN release. These data define, at least in part, the anatomical substrates that may be relevant to the antinociception of gestation and its hormonal simulation. Furthermore, they provide a framework for understanding sex-based nociception and antinociception and suggest novel strategies for treating pain.
منابع مشابه
Relationship of Spinal Dynorphin Neurons to -Opioid Receptors and Estrogen Receptor : Anatomical Basis for Ovarian Sex Steroid Opioid Antinociception
Pharmacological and behavioral studies suggest that spinal and -opioid antinociceptive systems are functionally associated with ovarian sex steroids. These interactions can be demonstrated specifically during pregnancy or hormone-simulated pregnancy (HSP). The analgesia associated with both conditions can be abolished by blockade of either spinal -opioid receptors or -opioid receptors (DOR). Fu...
متن کاملOvarian sex steroid-dependent plasticity of nociceptin/orphanin FQ and opioid modulation of spinal dynorphin release.
Pregnancy and its hormonal simulation via 17beta-estradiol (E(2)) and progesterone (P) are associated with spinal opioid antinociception, primarily driven by augmented dynorphin/kappa-opioid activity. This study addresses the ovarian sex steroid-activated mechanism(s) that underlie this activation using an ex vivo spinal cord preparation. In lumbar spinal cord obtained from control animals, exo...
متن کاملInfluence of ovarian sex steroids on spinal methionine-enkephalin release: comparison with dynorphin reveals asymmetrical regulation.
The concomitant activation of spinal kappa- and delta-opioid systems is a prerequisite for the antinociception of gestation and its hormonal simulation [via 17 beta-estradiol and progesterone administration; hormone-simulated pregnancy (HSP)]. However, it is not known whether the release of kappa- and delta-opioids is also concomitantly regulated. This study investigates whether the release of ...
متن کاملSexually dimorphic recruitment of spinal opioid analgesic pathways by the spinal application of morphine.
Current evidence for sex-based nociception and antinociception, largely confined to behavioral measures of pain sensitivity, chronic pain syndromes, and analgesic efficacy, provides little mechanistic insights into biological substrates causally associated with sexual dimorphic pain experience. Spinal cord has been shown to be a central nervous system region in which regulation of opioid antino...
متن کاملSex-/ovarian steroid-dependent release of endomorphin 2 from spinal cord.
Mu-opioid receptor (MOR) agonists have been shown to be more potent analgesics in male than female rodents. Regulation of spinal MOR-coupled antinociception by 17beta-estradiol (estrogen, E2) and progesterone (P) is also sexually dimorphic; pregnancy levels of E2/P activate MOR-coupled analgesic pathways in male but not female rats. We hypothesized that the sexual dimorphic characteristics of M...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 326 3 شماره
صفحات -
تاریخ انتشار 2008